Exam sample for the first periodic exam

1. We can write the speed of light (c = 299,000,000 m/s) using the scientific notation as:

8. Given the two vectors $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$, Find \vec{c} where $\vec{c} = \vec{a} + \vec{b}$?				
(a)	(+,+)	(b) (+ , -)	(c) (- , -)	(d) (- , +)
	y components	s of vector \vec{d} ?		x
7. In the figure, what is the signs of the x and y				
(a)	4 cm	(b) 5 cm	(c) 1 cm	(d) 7 cm
6.	A vector has two	o components (A_x =	= 3 cm and A _y = - 4	4 cm). What is the magnitude of A ?
(a)	7.35 m	(b) 14.7 m	(c) 0.61 m	(d) 1.22 m
5.	A ball thrown maximum heig	vertically upward w ght ?	vith an initial veloc	ity of 12 m/s, what is the ball's
(a)			(C) X = -5 C = 2	(u) x = 4 t
(-)	× 4 ² 2	(h) y 2 + ³		$(d) \sim 4 h^{-2}$
	particle is con	stant ?		
4.	The following ar	e equations of the p	position of a particle,	in which situation the velocity of the
(a)	29 m/s	(b) 28 m/s	(c) 84 m/s	(d) 10 m/s
	average veloc	ity of the particle in	the time interval t ₁ :	$=2 \text{ s to } t_2 = 5 \text{ s}$?
3.	Suppose the m	otion of a particle i	is described by the	equation: $X = 20 + 4 t^2$. Find the
(a)	27.8 m/s	(b) 16.7 m/s	(c) 277.8 m/s	(d) 167.7 m/s
2. A car moving with a speed of 100 km/h, what is its speed in m/s?				
(a)	2.99 x 10 °	(b) 29.9 x 10 °	(c) 0.299 x 10 °	(d) 299 x 10 °
()	D 00 10 ⁸	(1) 22 2 42 8	()	(1) 202 408

(a) $\vec{c} = 3\hat{i} + 5\hat{j} + 7\hat{k}$ (b) $\vec{c} = 3\hat{i} + \hat{j} + 7\hat{k}$ (c) $\vec{c} = \hat{i} + \hat{j} + 7\hat{k}$ (d) $\vec{c} = \hat{i} + 5\hat{j} + \hat{k}$

- **9.** Two vectors : $\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{B} = \hat{i} 2\hat{j} + 3\hat{k}$. Find $\vec{A} \cdot \vec{B}$?
- (a) 5 (b) 15 (c) 20 (d) 8
- **10.** Vector \vec{A} has a **magnitude of 6 units** and is in the **direction of positive x-axis**, vector \vec{B} has a **magnitude of 4 units** and making an angle of **30° with the positive x-axis**. What is the **magnitude of** $\vec{A} \times \vec{B}$?
- (a) 12 units (b) 24 units (c) 20.8 units (d) 28 units