Exam sample for the first periodic exam

1. We can write the speed of light $(\mathbf{c}=\mathbf{2 9 9}, 000,000 \mathrm{~m} / \mathrm{s})$ using the scientific notation as:
(a) 2.99×10^{8}
(b) 29.9×10^{8}
(c) 0.299×10^{8}
(d) 299×10^{8}
2. A car moving with a speed of $\mathbf{1 0 0} \mathbf{~ k m} / \mathbf{h}$, what is its speed in \mathbf{m} / \mathbf{s} ?
(a) $27.8 \mathrm{~m} / \mathrm{s}$
(b) $16.7 \mathrm{~m} / \mathrm{s}$
(c) $277.8 \mathrm{~m} / \mathrm{s}$
(d) $167.7 \mathrm{~m} / \mathrm{s}$
3. Suppose the motion of a particle is described by the equation: $\mathbf{X}=\mathbf{2 0 + 4 t} \mathbf{t}^{\mathbf{2}}$. Find the average velocity of the particle in the time interval $\mathbf{t}_{\mathbf{1}}=\mathbf{2} \mathrm{s}$ to $\mathbf{t}_{\mathbf{2}}=\mathbf{5} \mathbf{s}$?
(a) $29 \mathrm{~m} / \mathrm{s}$
(b) $28 \mathrm{~m} / \mathrm{s}$
(c) $84 \mathrm{~m} / \mathrm{s}$
(d) $10 \mathrm{~m} / \mathrm{s}$
4. The following are equations of the position of a particle, in which situation the velocity of the particle is constant ?
(a) $x=4 t^{2}-2$
(b) $x=-2 t^{3}$
(c) $x=-3 t-2$
(d) $x=4 t^{-2}$
5. A ball thrown vertically upward with an initial velocity of $\mathbf{1 2} \mathbf{~ m} / \mathrm{s}$, what is the ball's maximum height?
(a) 7.35 m
(b) 14.7 m
(c) 0.61 m
(d) 1.22 m
6. A vector has two components ($\mathbf{A}_{\mathbf{x}}=\mathbf{3} \mathbf{~ c m}$ and $\left.\mathbf{A}_{\mathbf{y}}=\mathbf{- 4} \mathbf{~ c m}\right)$. What is the magnitude of \mathbf{A} ?
(a) 4 cm
(b) 5 cm
(c) 1 cm
(d) 7 cm
7. In the figure, what is the signs of the x and y components of vector \vec{d} ?
(a) $(+,+)$
(b) $(+,-)$
(c) $(-,-)$
(d) $(-,+)$

8. Given the two vectors $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$, Find \vec{c} where $\vec{c}=\vec{a}+\vec{b}$?
(a) $\vec{c}=3 \hat{i}+5 \hat{j}+7 \hat{k}$
(b) $\vec{c}=3 \hat{i}+\hat{j}+7 \hat{k}$
(c) $\vec{c}=\hat{i}+\hat{j}+7 \hat{k}$
(d) $\vec{c}=\hat{i}+5 \hat{j}+\hat{k}$
9. Two vectors: $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{B}=\hat{i}-2 \hat{j}+3 \hat{k}$. Find $\vec{A} \cdot \vec{B}$?
(a) 5
(b) 15
(c) 20
(d) 8
10. Vector \vec{A} has a magnitude of $\mathbf{6}$ units and is in the direction of positive \mathbf{x}-axis, vector \vec{B} has a magnitude of 4 units and making an angle of 30° with the positive x-axis. What is the magnitude of $\vec{A} \times \vec{B}$?
(a) 12 units
(b) 24 units
(c) 20.8 units
(d) 28 units
